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a b s t r a c t

In this study, an observer for estimating the state and unknown inputs is proposed for monitoring
anaerobic digestion processes. This estimator is based on a dynamic model considering acidogenesis
and methanogenesis, and consists of three sub-observers: (a) a gramian-based fixed-time convergent
observer for the inlet chemical oxygen demand (COD) and the acidogenic bacteria population, (b)
an asymptotic observer for the methanogenic bacteria population, and (c) a super-twisting observer
for systems with time-varying parameters to estimate the inlet volatile fatty acid (VFA) concentration.
These sub-observers can be designed independently, which greatly simplifies the tuning process. Proofs
of convergence are developed and simulation tests show the performance of the estimation scheme
as compared to classical extended Kalman filtering.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Anaerobic digestion is nowadays a widespread technology for
he treatment of organic waste or wastewater due to several
dvantages, including low energy requirement, reduced amount
f biomass to be disposed and production of biogas, which can be
sed as a source of renewable energy. The complex biotransfor-
ations in anaerobic digestion are carried out by several groups
f microorganisms, which convert the waste into biogas in several
uccessive stages. A malfunction in any of these stages can lead
o the failure of the entire process. Substantial efforts have been
ade to understand, model and control the process, which is
ensitive to variations in the operating conditions. However, these
fforts are hampered by the lack of on-line measurements of
ome key variables, which is a usual situation in waste treatment
ystems. Therefore, the missing information needs to be inferred
y means of state/unknown input estimation techniques based on
he available measurements and a dynamic model of the process.
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For the anaerobic digestion process, two radically different
levels of description are considered. On one hand, the detailed
model ADM1 [1], with 26 state variables, is a gold standard
for analyzing and simulating the process, but it is seldomly ap-
plied for developing state estimators due to its complexity and
the amount of measurement required. For instance, [2] designs
a robust interval observer to estimate 14 state variables us-
ing 10 measured variables, e.g., substrate concentrations and
measurements related to biogas. On the other hand, low-order
models, considering simple one-, two- or three-step reaction
systems, such as the AMOCO (or AM2) [3], are often considered
for the development of observers and controllers [4–8]. A major
concern is the uncertainty on reaction kinetics, which can be
alleviated by the use of asymptotic observers [9]. Various applica-
tions of this approach to anaerobic digestion systems have been
reported [10]. Another concern is the absence of measurements
of the influent composition, which led to the development of
a great variety of unknown input observers. For instance, [4]
presents an observer design based on a system transformation
using a singular value decomposition, in order to estimate the
unknown process inputs, e.g., concentrations of substrates and al-
kalinity in the influent, along with the unmeasured process states,
e.g., acidogenic and methanogenic biomass concentrations and
inorganic carbon, assuming that measurements of the chemical
oxygen demand (COD), volatile fatty acids (VFA), alkalinity and
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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utflow rates of methane and carbon dioxide are available. An
nterval observer for the unknown input of a one-step reaction
naerobic digestion model is derived in [11]. In [5], a virtually
ontrolled observer is proposed to simultaneously estimate the
nfluent substrate concentration and the unmeasured states of
two-step reaction anaerobic digestion model from measure-
ents of the effluent COD, VFA and carbon concentrations. In [6],

he authors designs an adaptive observer that exploits the cas-
ade structure of the model to estimate the state vector and
he maximum growth rate of the acidogenic and methanogenic
iomass, using measurements of the COD and VFA concentra-
ions. In [12], a continuous–discrete extended Kalman filter is
roposed to estimate a slowly varying unknown input.
This brief (and by no means exhaustive) overview shows that

easurements of the substrates within the reactor (chemical
xygen demand and volatile fatty acids) as well as measure-
ents of the biogas (flow rate and composition) are often con-
idered as information source. On the other hand, acidogenic
nd methanogenic biomass populations as well as influent con-
entrations are often out of reach and require some form of
stimation.
The contribution of this work is to propose an integrated

olution for the state and input estimation of a two-step anaer-
bic digestion model. The proposed solution relies on the use of
liding mode observers, which have been successfully applied to
everal biotechnological processes. For example, [13–15] employ
econd order sliding mode observers to estimate reaction rates,
hile [16] tackles the global estimation problem of a bioreactor
ith isotonic or non-isotonic growth.
For the two-step anaerobic digestion model AM2, [7] presents

generalized super-twisting algorithm based on [17] to estimate
he acidogenic and methanogenic biomass concentrations as well
s the concentrations of organic substrate and volatile fatty acids
n the influent. The study [7] is a proof of concept through nu-
erical simulations, and does not provide proofs of convergence
nd a complete design procedure. The objective of the present
ork is to provide these missing points and a rigorous analysis
f the proposed observer, while innovating in the estimation of
he inlet substrate and the bacteria population involved in the
cidogenesis step. Our proposed observer consists of three parts:

1. A sub-observer for the inlet substrate (inlet COD) and bac-
teria population involved in the acidogenesis step. Contrary
to the preliminary work [7], the internal stability of this
sub-observer is guaranteed. Furthermore, by taking ad-
vantage of a constructibility Gramian, the sub-observer
converges in fixed-time.

2. An asymptotic sub-observer for the methanogenic bacteria
population. Different from [7], in this note we provide the
sub-observer rate of convergence.

3. A super-twisting sub-observer for systems with time-
varying parameters to estimate the inlet substrate (inlet
VFA) in finite-time.

ince each sub-observer can be designed and tuned indepen-
ently, the observation task is greatly simplified. For each
ub-observer the convergence proof is presented and simulation
esults are included to illustrate the accuracy of the estimation.

This paper is organized as follows. Section 2 presents the
naerobic digestion system and the unknown input and state
stimation problem. Section 3 develops the three-step observa-
ion scheme, while the several formal proofs are provided in
ppendix A. The performance of the estimator is tested in simu-
ation in Section 4 and compared to a classical extended Kalman–
ucy filter. Finally, the last section draws conclusions and

erspectives. Q
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1.1. Notation

R denotes the set of real numbers and R≥0 the set of non-
negative real numbers, Rn the n-dimensional Euclidean space,
and Rn×m the set of n × m matrices. The symbol In ∈ Rn×n

enotes the identity matrix. For symmetric matrices A, B ∈ Rn×n,
> B (A ≥ B) means that A − B is positive (semi) definite.

or p ≥ 1, ∥v∥p denotes the p−norm defined as
(∑n

i=1 |vi|
p)1/p.

n the case of B ∈ Rm×n, ∥B∥p denotes the induced norm of B,
efined as sup∥ν∥p=1 ∥B ν∥p. If the subscript is omitted, it denotes
he Euclidean norm, i.e., ∥v∥ = ∥v∥2 and ∥B∥ = ∥B∥2. For a
ymmetric matrix A, λmin(A) and λmax(A) denote the smallest and
argest eigenvalues of A, respectively. The elements below the
iagonal of a symmetric matrix are denoted by ⋆. Finally, for x ∈

and p ≥ 0, ⌈x⌋p denotes the signed power of x, i.e., |x|psign(x).
f x ∈ Rn, then ⌈x⌋p is understood element-wise.

.2. Definitions

Consider the time-varying system

˙(t) = f
(
x(t), t

)
, (1)

here x(t) ∈ Rn. It is assumed that for every initial time t0 ≥ 0
nd initial condition x(t0) ∈ Rn, the corresponding solution to (1)

exists for all t ≥ t0 and it is unique. Suppose that f (0, t) = 0 for
all t ≥ t0 ≥ 0. We introduce the following concepts of Lyapunov
tability.

efinition 1 (Global Uniform Finite-Time Stability [18]). The solu-
ion x(t) = 0 of (1) is (Lyapunov) globally uniformly finite-time
table if, for each ϵ > 0, there is δ(ϵ) > 0, independent of t0, such
hat ∥x(t0)∥p < δ, with p ≥ 1, implies that ∥x(t)∥p < ϵ, and there
s a function T : R≥t0 ×Rn

→ R≥0, called the settling time function,
uch that, for every t0 ∈ R≥0 and x0 ∈ Rn, limt→T (t0,x0) x(t) = 0
ith x(t0) = x0.

efinition 2 (Uniform Fixed-Time Stability [19]). The solution
(t) = 0 of (1) is (Lyapunov) uniformly fixed-time stable if it is
Lyapunov) globally uniformly finite-time stable and the settling
ime function is bounded, i.e., there exists T̄ > 0 such that
(t0, x0) ≤ T̄ for all x0 ∈ Rn and t0 ≥ 0.

. Anaerobic digestion model and problem statement

Consider an anaerobic digestion process taking place in a
ontinuous flow stirred-tank bioreactor, characterized by two
eactions [3]:

• Acidogenesis as1 → x1 + cs2,
• Methanogenesis bs2 → x2 + CH4,

here CH4 denotes methane gas, s1 is the organic substrate (COD)
onsumed by the acidogenic bacteria x1, s2 is the VFA converted
y the methanogenic microorganisms x2 into methane, and the
ositive constants a, b, and c are stoichiometric coefficients.
The mathematical model describing the process consists of

he mass balance equations for the two species and the two
ubstrates, together with the methane outflow rate. This results
n the following five equations [3]:

ṡ1(t) = u(t)
(
σ1(t) − s1(t)

)
− aµ1 (s1(t)) x1(t),

ẋ1(t) =
(
µ1 (s1(t))− u(t)

)
x1(t),

ṡ2(t) = u(t)
(
σ2(t) − s2(t)

)
+ cµ1 (s1(t)) x1(t)

− bµ2 (s2(t)) x2(t),
ẋ2(t) =

(
µ2 (s2(t))− u(t)

)
x2(t),

(2)
M (t) = qµ2 (s2(t)) x2(t),
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here u(t) ∈ R≥0 is the dilution rate (the ratio between the
nput flow and the reactor volume); s1(t) ∈ R≥0, s2(t) ∈ R≥0,
1(t) ∈ R≥0 and x2(t) ∈ R≥0 correspond to the system states;
M (t) denotes the methane outflow rate with q > 0 the methane

yield coefficient. Finally, the growth rates are denoted by µ1 :

R≥0 → R≥0 and µ2 : R≥0 → R≥0 whereas the substrate
oncentrations in the influent are represented by σ1(t) ∈ R≥0
(COD) and σ2(t) ∈ R≥0 (VFA).

Based on available instrumentation (as described in [20]), it
is assumed in the sequel that the substrates s1(t) and s2(t) are
measured together with the methane outflow rate:

y1(t) = s1(t),
y2(t) = s2(t),
y3(t) = QM (t) = qµ2 (s2(t)) x2(t).

(3)

The main objective of this work is to design an observer for
the system (2) with outputs (3) to reconstruct the species con-
centrations in the bioreactor x1(t) and x2(t), while considering the
substrate concentrations at the inlet σ1(t) and σ2(t) as unknown
inputs. An additional goal is to provide an estimate of σ1(t) and
σ2(t). To this end, we assume that part of the bioreactor model
(2) together with its parameters are known, according to:

Assumption 1.

1. The dilution rate u(t), i.e., the system input, is known, and
there exists umax > 0 such that umax ≥ u(t) for all t ≥ t0,
i.e., u(t) is uniformly bounded.

2. The stoichiometric coefficients of the model a, c and b are
known together with the methane yield coefficient q.

3. The growth rate µ1 is a known function of the substrate
s1(t).

4. The growth rate µ2 is an unknown function, continuous in
its argument.

To account for the unknown substrate concentrations at the
inlet, the following characterizations of σ1(t) and σ2(t) are intro-
duced.

Assumption 2.

1. The substrate concentration at the influent σ1(t) is con-
stant.

2. The substrate concentration at the influent σ2(t) is a
smooth function of time such that its derivative is bounded
by the dilution rate magnitude, i.e.,

|σ̇2(t)| ≤ Lu(t) ∀ t ≥ t0,

for some known constant L > 0.

Note that only an explicit model for µ1 is required, whereas µ2
is unknown. This is due to the availability of y3(t) which provides
indirect information about µ2, replacing the requirement of a
model for it. Regarding Assumption 2, the first item assigns a
model to σ1 which allows to study its observability, whereas
the second item means that the concentration at the influent
σ2(t) can only change as long as there is media flowing into the
bioreactor, and that its rate of change is not arbitrarily fast.

In the following, three sub-observers are designed to recon-
struct the internal state of the bioreactor (2) together with the
substrate concentrations at the influent σ1 and σ2(t).

3. Observation scheme and main result

Before starting the observer design, we introduce the fol-
lowing auxiliary variables with the intention of simplifying the
171
developments:

z(t) :=
c
a
s1(t) + s2(t) =

c
a
y1(t) + y2(t),

ζ (t) :=
c
a
σ1(t) + σ2(t).

(4)

Using the auxiliary variables z(t) and ζ (t), the bioreactor dynam-
ics (2) can be rewritten as{
ṡ1(t) = u(t)

(
σ1(t) − s1(t)

)
− aµ1 (s1(t)) x1(t),

ẋ1(t) =
(
µ1 (s1(t))− u(t)

)
x1(t),

(5a)

ẋ2(t) =
(
µ2 (s2(t))− u(t)

)
x2(t), (5b)

ż(t) = u(t)
(
ζ (t) − z(t)

)
−

b
qy3(t). (5c)

Whereas (5a) and (5b) are taken directly from (2), (5c) is derived
by taking the time derivative of z(t) in (4), while considering the
definitions of y3(t) in (3) and ζ (t) in (4). Note that by reconstruct-
ing s1(t), σ1(t), z(t) and ζ (t), one can estimate s2(t) and σ2(t) using
the inverse to (4), i.e.,

s2(t) = z(t) −
c
a
s1(t),

2(t) = ζ (t) −
c
a
σ1(t).

(6)

Therefore, the representations (2) and (5) are equivalent.
Based on the subsystems in (5), a three-step estimation

scheme is developed in the sequel, that can be summarized as
follows:

1. sub-observer 1, developed in Section 3.1, estimates in uni-
form fixed-time s1(t), x1(t) and σ1(t) in (5a) under the
uniform complete constructibility of a linear time-varying
system based on (5a).

2. sub-observer 2, exposed in Section 3.2, estimates x2(t) ex-
ponentially whenever the dilution rate u(t) satisfies the
classic persistence of excitation condition.

3. sub-observer 3, presented in Section 3.3, provides esti-
mates in uniform finite-time of z(t) and ζ (t). Together with
the estimates provided by sub-observer 1, σ2(t) can be
reconstructed using relationships (6).

.1. Observer for the subsystem (5a)

Consider the (virtual) linear time-varying (LTV) system

χ̇ (t) = A(t)χ (t),
¯1(t) = Cχ (t),

(7)

ith

(t) =
[
χ1(t) χ2(t) χ3(t)

]⊤
,

A(t) =

⎡⎢⎣−u(t) −aµ1
(
y1(t)

)
u(t)

0 µ1
(
y1(t)

)
− u(t) 0

0 0 0

⎤⎥⎦ ,
C =

[
1 0 0

]
.

ote that the system (7) is driven by the input u(t) and output
1(t) of (5a). Furthermore, iff (7) is initialized at the initial con-
itions of (5a), and under Assumption 2. 1, the trajectories and
utput of (7) reproduce the ones of (5a). This follows from the
atching of the time derivative and the initial conditions. Thus,
n observer for (7) also provides the estimates for x1(t) and σ1
y recognizing that χ1(t) = s1(t), χ2(t) = x1(t) and χ3(t) = σ1
or all t ≥ t0. By transitivity, this also implies that ȳ1(t) ≡ y1(t).
oreover, this reveals conditions under which it is possible to

econstruct the state of (5a). These conditions are summarized in
he following assumption.



J.G. Rueda-Escobedo, M. Sbarciog, J.A. Moreno et al. Journal of Process Control 117 (2022) 169–180

A
e
t

η

T

y

w

A

u

e
s

c
F
o
v
p

3

(

x

ssumption 3. Consider systems (5a) and (7). We assume the
xistence of positive constants η1 ≥ η2 and T1, all independent of
ime, such that

1I3 ≥ C(t, t − T1) :=

∫ t

t−T1

Φ⊤(s, t)C⊤CΦ(s, t)ds ≥ η2I3, (8)

whereΦ(s, t) is the state transition matrix associated to A(t), with
A(t) and C as in (7), and where C(t, t − T1) is the constructibility
Gramian of (7).

Assumption 3 is equivalent to the uniform complete constructibility
of (7). Note also that uniform complete constructibility and uni-
form complete observability are equivalent for continuous time
linear systems. Therefore, under Assumption 3, it is possible to
estimate the internal state of (7), and thus the one of (5a).

To simplify the design and presentation of an observer for (5a),
we introduce the invertible time-varying change of coordinates

ς (t) =

[ 1 0 0
−1 −a ξ (t)
0 0 1

]
χ (t), (9)

where ξ (t) is a known term generated by the auxiliary filter

ξ̇ (t) = −u(t)ξ (t) + u(t), ξ (t0) ≥ 0. (10)

his results in the transformed system

ς̇ (t) = Ā(t)ς (t),
¯1(t) = Cς (t),

(11)

ith

¯ (t) =[
−u(t) + µ1(y1(t)) µ1(y1(t)) u(t) − µ1(y1(t))ξ (t)

0 −u(t) 0
0 0 0

]
.

The transformation (9) not only preserves the upper triangular
structure of (7), but now the elements in the main diagonal of Ā(t)
are non-positive or can be rendered non-positive with an output
injection. Furthermore, the structure of Ā(t) suggests that a linear
output injection term can be used to introduce dissipation in the
estimation error dynamics, thus stabilizing it. Using the system
description (11), we propose the following observer:
˙̂ς (t) = Ā(t)ς̂ (t) − K (t)

[
C ς̂ (t) − y1(t)

]
− N(t)

2∑
i=1

ri
⌈
N(t)ς̂ (t) − ψ(t)

⌋pi , (12)

where ς̂ (t) is the estimate of ς (t), r1 > 0 and r2 > 0 are the
observer gains, and the exponents p1 ∈ [0, 1) and p2 > 1 are
design parameters. The linear output injection gain K (t) is given
by

K (t) =
[
κ1 + µ1(y1(t)) µ1(y1(t)) u(t) − µ1(y1(t))ξ (t)

]⊤ (13)

with κ1 ≥ 0. Finally, the auxiliary variables N(t) = N⊤(t) and
ψ(t) are generated by the filters

Ṅ(t) = −Ā⊤(t)N(t) − N(t)Ā(t) − N(t)QN(t) + C⊤C,

ψ̇(t) = −
(
Ā(t) + QN(t)

)⊤
ψ(t) + C⊤y1(t),

(14)

with initial conditions N(t0) = 0 and ψ(t0) = 0, and where
Q = Q⊤ > 0 is a design parameter. Note that for any Q > 0,
N(t) is uniformly bounded since the pair (−Ā⊤(t),Q

1
2 ) is always

niformly completely observable [21].
In (12), the linear output injection is used to stabilize the

stimation error dynamics, and ensures the observer internal
tability even when Assumption 3 is not satisfied. On the other
172
hand, the nonlinear injection terms, depending on the exponents
p1 and p2, are used to accelerate the convergence rate when
Assumption 3 holds. The properties of the proposed observer are
given in the following theorem.

Theorem 1. Consider system (11) and observer (12). Let u(t) be
uniformly bounded. Define the estimation error as ς̃ (t) = ς̂ (t) −

ς (t). For any positive design parameters r1, r2, p1 ∈ [0, 1), p2 > 1,
κ1 ≥ 0, and positive definite symmetric matrix Q , the solution
ς̃ (t) = 0 of the estimation error dynamics is globally uniformly
stable. Furthermore, if Assumption 3 is satisfied, the solution ς̃ (t) =

0 is uniformly fixed-time stable (see Definition 2), meaning that ς̂ (t)
converges to ς (t) in fixed-time, uniformly in t0.

Finally, the estimate of the original states is given by[ ŝ1(t)
x̂1(t)
σ̂1(t)

]
=

[ 1 0 0
−1/a −1/a ξ (t)/a
0 0 1

]
ς̂ (t),

with ξ (t) as in (10), and for any ξ (t0) ≥ 0.

Remark 1. The convergence time of the proposed observer (12)
depends on the chosen observer parameters, the excitation level
η2 in (8), and it cannot be less than the constructibility window
length, i.e., T1 > 0 in (8).

Assumption 3 provides sufficient conditions for estimating the
state of (7) together with σ1. However, it does not give direct
conditions over u(t) and y1(t) to verify whenever Assumption 3
holds. We investigate this in the following proposition.

Proposition 1. Let u(t) and µ1(y1(t)) be uniformly bounded. The
system (7) is uniformly completely observable iff there exist positive
constants γ1, γ2 and T1, all independent of time, such that

γ1I2 ≥

∫ t+T1

t
K⊤(s, t)K(s, t)ds ≥ γ2I2, (15)

with

K(s, t) =

∫ s

t
B(σ , t)dσ ,

B⊤(t, t0) =

[
−µ1(y1(t)) exp

(
−
∫ t
t0
u(σ )dσ

)
u(t) − µ1(y1(t))

]
.

(16)

The observer (12) together with Theorem 1 provide the ma-
hinery required for estimating a constant unknown input σ1.
urthermore, under Assumption 3, and due to the robustness
f the fixed-time convergence, disturbances such as noise or
ariations in σ1 will result in bounded estimation errors. This
oint is illustrated in Section 4 via numerical simulation.

.2. Observer for the subsystem (5b)

With the purpose of designing an observer for the subsystem
5b), we use the output y3(t) in (3) to rewrite (5b) as

˙2(t) = −u(t)x2(t) +
1
q
y3(t). (17)

Once the system is in the form (17), it is possible to use a copy of
the system dynamics as an observer since all the terms involved
are known. Hence, the observer takes the form [7,9]

˙̂x2(t) = −u(t)x̂2(t) +
1
q
y3(t), (18)

where x̂2(t) is the estimate of x2(t). Thanks to the availability of
y3(t), the observer (18) is independent of µ2.

The observer (18) has the following properties.
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heorem 2. Consider the system (17) and the observer (18).
Let u(t) be uniformly bounded, and define the estimation error as
x̃2(t) = x̂2(t) − x2(t). Then the solution x̃2(t) = 0 of the estimation
error dynamics is globally uniformly stable. Furthermore, if there
exist positive constants γ3, γ4 and T2, all independent of time, such
that

γ3 ≥

∫ t

t−T2

u2(τ )dτ ≥ γ4, (19)

the solution x̃2(t) = 0 is globally uniformly asymptotically stable,
i.e., the estimate x̂2(t) converges to x2(t) asymptotically, uniformly
in t0. In such case, the estimation error satisfies the bound

⏐⏐x̃2(t)⏐⏐ ≤

√
β1

β2

⏐⏐x̃2(t0)⏐⏐ exp(−
γ4

4β2

(
t − t0

))
, (20)

ith

1 =
2T 2

2 u
2
maxγ

2
3

γ4
+ T2 + T2γ3, β2 =

2T 2
2 u

2
maxγ

2
3

γ4
+ T2, (21)

nd where umax is given in Assumption 1.

Note that (19) is required for the observer to converge. This
ondition means that the dilution rate u(t) has to be persistently
xciting. This happens, for example, when u(t) does not approach
asymptotically u(t) = 0. Also, note that the convergence rate
(20) depends on the excitation level of u(t), and that it cannot
be improved by means of the observer parameters. This makes
the proposed observer an asymptotic observer [9].

.3. Observer for the subsystem (5c)

The subsystem (5c) can be understood as a system subject
o the external disturbance ζ (t). Under Assumption 2. 2, it is
possible to compensate the disturbance using a super-twisting-
ike algorithm, allowing to estimate both, the state z(t) and the
isturbance ζ (t), in finite time.
An important difference with respect to the standard appli-

cation of the super-twisting algorithm is that the disturbance is
multiplied by a time-dependent variable, in this case the dilution
rate u(t). Hence, we propose to use the super-twisting observer
for systems with time-varying parameters presented in [22]. For
the system (5c), the observer takes the form

˙̂z(t) = −k1u(t)φ1
(
z̃(t)

)
−

b
q
y3(t) + u(t)

(
ζ̂ (t) − z(t)

)
,

˙̂
ζ (t) = −k2u(t)φ2

(
z̃(t)

)
,

(22)

ith z̃(t) = ẑ(t) − z(t) and

1
(
z̃(t)

)
= m1⌈z̃(t)⌋

1
2 + m2⌈z̃(t)⌋p3 ,

φ2
(
z̃(t)

)
=

m2
1

2
⌈z̃(t)⌋0 + m1m2

(
p3 +

1
2

)
⌈z̃(t)⌋p3−

1
2

+ m2
2⌈z̃(t)⌋

2p3−1.

The algorithm parameters are the positive constants k1, k2, p3 ≥
1
2 , m1 and m2. It holds that φ2(z̃) = φ′

1(z̃)φ1(z̃) [22]. Note also
hat φ1 is continuous, whereas φ2 is discontinuous at z̃ = 0.
Hence, the solutions of (22) have to be understood in the sense
of Filippov [23].

For this observer, we have the following result.

Theorem 3. Consider the system (5c) and the observer (22). Let
u(t) be uniformly bounded. Define the estimation errors as z̃(t) =

ẑ(t) − z(t) and ζ̃ (t) = ζ̂ (t) − ζ (t). Fix the observer parameters
173
m1 > 0, m2 > 0 and p3 ∈ [
1
2 , 1]. Design the observer gains as

k1 =
ρ2l1 + l2
ρ1ρ2 − 1

, k2 =
l1 + ρ1l2
ρ1ρ2 − 1

, (23)

here ρ1 > 0, ρ2 > 0, l1 > 0 and l2 ∈ R are such that

ρ1ρ2 > 1, l1 >
2L
m2

1
+

1
4

(
l2 − ρ1 ± ρ2

2L
m2

1

)2

, (24)

and with L > 0 as in Assumption 2. 2. Then the solution {z̃(t) =

0, ζ̃ (t) = 0} of the estimation error dynamics is globally uniformly
stable. Furthermore, if u(t) satisfies (19) for some positive constants
γ3, γ4, and T2, all independent of time, the solution {z̃(t) = 0, ζ̃ (t) =

0} is globally uniformly finite-time stable (see Definition 1). That is,
the estimates ẑ(t) and ζ̂ (t) converge to z(t) and ζ (t), respectively,
in finite time, uniformly in t0.

The estimate of the original variables is given by

ŝ2(t) = ẑ(t) −
c
a
y1(t),

σ̂2(t) = ζ̂ (t) −
c
a
σ̂1(t),

where σ̂1(t) is obtained from the observer (12).

3.4. Discussion

Splitting the bioreactor dynamics (2) for the observer design
purpose results in several benefits. On one hand, it was possible
to minimize the hypotheses over σ2 and the knowledge of µ2.
n the case of σ1, its estimation in combination with x1 was
investigated, and precise observability conditions were derived.
Analogue results were also possible in the case of x2. Second,
pecialized observers were developed for each subsystem, which
n the case of x1(t), σ1(t) and σ2(t), provide enhanced convergence
roperties such as finite and fixed-time convergence. Third, the
bservers (12) and (22) can be tuned independently of (18),
hich allows decoupling the convergence of x̂1(t), σ̂1(t) and σ̂2(t)

from x̂2(t). This contrasts with the standard application of the ex-
ended Kalman–Bucy filter, where it is difficult to independently
une the converge rate for each state. Finally, the uniform con-
ergence properties obtained under the persistence of excitation
onditions (15) and (19) guarantee robustness of the estimation
rocess under additive disturbances such as noise or additional
ounded unknown inputs [24, Sec. 4.9], [25].
In the next section, we illustrate the application of the pro-

osed observation scheme, and show its enhanced convergence
peed with respect to a Kalman–Bucy filter.

. Simulation tests

The bioreactor model (2) is simulated using the stoichiometric
oefficients, the growth functions µ1 and µ2, and the initial
onditions from [8]. The growth rate functions µ1 and µ2 are of
the Monod and Haldane type, respectively, and are described by

µ1(s1) =
µmax

1 s1
s1 + Ks1

, µ2(s2) =
µmax

2 s2
1
KI2

s22 + s2 + Ks2

.

The stoichiometric coefficients together with the growth func-
tions parameters are given in Table 1.

The influent substrate concentrations σ1(t) and σ2(t) are given
y

1(t) = 50,
σ2(t) = 82.5 + 10 sin(t) + 2 sin(5t) + sin(10t).

(25)

Finally, to ensure enough excitation and satisfy the conditions of
Assumption 3 and (19), the dilution rate is chosen as a squared
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Table 1
Parameters of the simulated anaerobic digestor (2), following [8, Tab. 3].
Stoichiometric coefficients Growth rate parameters

a 100 µmax
1 1 [d−1]

b 300 [mmol/g] Ks1 5 [g/L]
c 280 [mmol/g] µmax

2 0.8 [d−1]
q 500 [mmol/g] Ks2 60 [mmol/L]

KI2 350 [mmol/L]

Fig. 1. Dilution rate used during the simulation.

Fig. 2. Estimation of the organic substrate (COD) s1(t) and the VFA s2(t) by
the proposed observation scheme, denoted by ŝ1(t) and ŝ2(t), and the extended
Kalman–Bucy observer, denoted by ŝK1 (t) and ŝK2 (t).

wave with period 2 [d], amplitude 0.4 [d−1], and with a bias term
of 0.2 [d−1]. A plot of the dilution rate is provided in Fig. 1.

The parameters of the observer (12) are chosen as

r1 = r2 = 5000, p1 = 0, p2 = 4, κ1 = 1500, Q = 100 I3.

For this observer, the convergence rate depends on the gains r1
and r2, and the exponents p1 and p2. To speed up the convergence,
one can increase r1, r2, and p2, or decrease p1. For this example,
we took the minimum for p1, i.e., p1 = 0, and a high but
numerically stable value for p2, i.e., p2 = 4. The initial conditions
or the observer, including the filter ξ (t) in (10), are taken as zero.
In the case of the second observer (18), there are no parameters
to be set. Finally, for the third observer (22), we fix

m1 = m2 = 15, ρ1 = ρ2 = l2 = 2, p3 = 1.

Based on the description provided for σ2(t) in (25) and the min-
imum of u(t), we estimate L as

L = 500 ≥
supt≥t0 |σ̇2(t)|

.

mint≥t0 u(t)

174
Fig. 3. Estimation of the acidogenic bacteria biomass x1(t) and the methanogenic
microorganism biomass x2(t) by the proposed observation scheme, denoted by
x̂1(t) and x̂2(t), and the extended Kalman–Bucy observer, denoted by x̂K1 (t) and
x̂K2 (t).

In order to satisfy (24), and given L = 500, we choose l1 = 26.62.
This yields the observer gains k1 = 18.41 and k2 = 10.21.

To contrast the proposed observer scheme, an extended
Kalman–Bucy filter is implemented taking as system matrices
A(t) and C(t) in (27) (Eq. 27 is given in Box I). In such case, the
observer is described by
˙̂X(t) =

A(t)X̂(t) − H(t)C⊤(t)R−1

(
C(t)X̂(t) −

[y1(t)
y2(t)
y3(t)

])
, (26)

X̂(t) =
[
ŝ1(t) x̂1(t) σ̂1(t) ŝ2(t) x̂2(t) σ̂2(t)

]⊤
,

with H(t) the solution of the differential Riccati equation

Ḣ(t) =

A(t)H(t) + H(t)A⊤(t) − H(t)C⊤(t)R−1C(t)H(t) + P,

with R−1
= 10 I3, P = I6, and H(t0) = 100 I6. Note that, in

contrast with the proposed observer scheme, for implementing
the observer (26), the expression for µ2 is required and the
unknown input σ2 has to be considered as a constant function.

The system of differential equations is solved using Matlab©
Simulink© in combination with the solver ode45 with a step
size bounded in the interval [10−7, 10−5

] [d] ([8.64×10−3, 0.864]
[s]). The estimation results are shown in Fig. 2 for s1(t) and s2(t),
in Fig. 3 for x1(t) and x2(t), and in Fig. 4 for σ1(t) and σ2(t). As can
be seen in Fig. 2, the proposed observer correctly estimate s1(t)
and s2(t), whereas the Kalman–Bucy filter presents an error in
s1(t). Nevertheless, both observers provide an adequate estima-
tion, which is not surprising since these variables are measured.
The first important difference appears in the estimation of x1(t)
in Fig. 3. Whereas the proposed observer correctly estimates
x1(t), the estimate provided by the extended Kalman–Bucy filter
oscillates around the correct value. By looking at Fig. 6, we can see
that the relative error is as high as 65% at some points. In the case
of the proposed observer, the relative error in x1 vanishes after 5
days, as is shown in Fig. 5. In the case of x2(t), both observers
provide an accurate estimation. However, we remark once more
that the extended Kalman–Bucy filter requires the model of µ ,
2
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Fig. 4. Estimation of the substrate concentrations in the influent σ1(t) and
σ2(t) by the proposed observation scheme, denoted by σ̂1(t) and σ̂2(t), and the
extended Kalman–Bucy observer, denoted by σ̂ K

1 (t) and σ̂ K
2 (t).

Fig. 5. Relative error in percentage per estimated variable with the proposed
observation scheme.

Fig. 6. Relative error in percentage per estimated variable with the extended
alman–Bucy observer.

hereas the observer (18) is independent of it. Finally, for σ1(t)
nd σ2(t), only the proposed observation scheme is capable of
roviding an accurate estimation, as is shown in Fig. 4. In the
ase of the extended Kalman–Bucy filter, the relative error in σ1(t)
tabilizes around 40%, while for σ2(t), the relative error oscillates
round 50%. This is shown in Fig. 6. In the case of the proposed
bservation scheme, the relative error in both variables, σ1(t) and
2(t), vanishes after 5 days, which can be seen in Fig. 5.
To show the robustness of the proposed approach, we re-

eated the simulation while adding uniform noise to the mea-
urements. The noises added to the measurements y1(t), y2(t),
nd y3(t) in (3) are bounded in the intervals [−0.05, 0.05], [−4,
], and [−3, 3], respectively. The noise level introduced corre-
ponds to 4∼5% of the signals magnitude on average. Further-
ore, based on [26], we introduced a zero-order-hold in the
175
Fig. 7. Estimation of the organic substrate (COD) s1(t) and the VFA s2(t) by
he proposed observation scheme, denoted by ŝ1(t) and ŝ2(t), and the extended
alman–Bucy observer, denoted by ŝK1 (t) and ŝK2 (t), under disturbed conditions.

Fig. 8. Estimation of the acidogenic bacteria biomass x1(t) and the methanogenic
microorganism biomass x2(t) by the proposed observation scheme, denoted by
x̂1(t) and x̂2(t), and the extended Kalman–Bucy observer, denoted by x̂K1 (t) and
x̂K2 (t), under disturbed conditions.

measurements with a sampling time of 1.3 × 10−4 [d] (11.23
[s]) to emulate the sampling time of the sensors. Finally, we per-
turbed the model of µ1 used in the bioreactor by taking 1.05µmax

1
and 0.95Ks1 instead of the original parameters. Note also that the
value of µ1 is computed using the noisy measurement y1(t). The
results of the simulation with disturbances are shown in Figs. 7, 8,
and 9. Overall, the proposed observer keeps a correct estimation
of the bioreactor states and inputs under these circumstances, as
shown by the relative errors in Fig. 10. In the case of the Kalman–
Bucy filter, the previous errors in the estimates of s1(t), x1(t),
σ1(t), and σ2(t) persist, as revealed by the relative errors in Fig. 11.
Finally, to aid in the interpretation of the simulation results, we
provide in Table 2 the RMS value of the relative errors shown in
Figs. 10 and 11.
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A(t) =

⎡⎢⎢⎢⎢⎢⎣
−u(t) −aµ1(y1(t)) u(t) 0 0 0

0 µ1(y1(t)) − u(t) 0 0 0 0
0 0 0 0 0 0
0 c µ1(y1(t)) 0 −u(t) −bµ2(y2(t)) u(t)
0 0 0 0 µ2(y2(t)) − u(t) 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ , C⊤(t) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 0 0
0 0 0
0 1 0
0 0 qµ2(y2(t))
0 0 0

⎤⎥⎥⎥⎥⎥⎦ . (27)

Box I.
Fig. 9. Estimation of the substrate concentrations in the influent σ1(t) and
σ2(t) by the proposed observation scheme, denoted by σ̂1(t) and σ̂2(t), and the
extended Kalman–Bucy observer, denoted by σ̂ K

1 (t) and σ̂ K
2 (t), under disturbed

conditions.

Fig. 10. Relative error in percentage per estimated variable with the proposed
observation scheme under disturbed conditions.

Fig. 11. Relative error in percentage per estimated variable with the extended
alman–Bucy observer under disturbed conditions.
176
Table 2
RMS value of the relative errors shown in Figs. 10 and 11 after a transient of
10 [d].
Variable s̃1 x̃1 s̃2
Proposed observer 4.28% 1.66% 0.22%
Extended KBO 85.5% 53.8% 0.60%

Variable x̃2 σ̃1 σ̃2

Proposed observer 0.20% 3.0% 6.87%
Extended KBO 0.21% 32.3% 59.9%

5. Conclusions

In this work, a three-step observation scheme, consisting of
a Gramian-based observer, an asymptotic observer, and a super-
twisting observer, is developed to monitor an anaerobic digestion
process based on the AM2 model. The sub-observers can be
designed independently, and the overall scheme provides en-
hanced convergence and robustness with respect to an extended
Kalman–Bucy filter. It is important to note that the step-by-
step observer design presented in this study is not restricted
to the anaerobic digestion system, but could also be extended
to other systems with sequential reactions such as for instance
nitrification–denitrification systems. Furthermore, the finite and
fixed-time convergence provided by the proposed scheme is well
suited for the monitoring of bioreactors operating in batch, where
early estimates are crucial.
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Appendix A. Proof of claims

A.1. Proof of Theorem 1

Before proving the central result, we need to show that the
following two properties hold:

N(t)ς (t) ≡ ψ(t) ∀ t ≥ t0, (A.1)

N(t) ≥ η̄I3 > 0 ∀ t ≥ t0 + T1. (A.2)
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he first relation will be used to show that the nonlinear output
njection in (12) carries information about the estimation error,
hereas the second one means that N(t) is positive definite with
igenvalues larger than η̄ > 0.
To prove (A.1), we consider the time derivative of N(t)ς (t),

hich taking into account (11) and (14), and by noticing that
¯1(t) ≡ y1(t) results in
d
dt

N(t)ς (t) = Ṅ(t)ς (t) + N(t)ς̇ (t)

= −Ā⊤(t)N(t)ς (t) − N(t)Ā(t)ς (t) + C⊤Cς (t)

− N(t)QN(t)ς (t) + N(t)Ā(t)ς (t)

= −

(
Ā(t) + QN(t)

)⊤

N(t)ς (t) + C⊤y1(t).

Since ψ̇(t) = Ṅ(t)ς (t) + N(t)ς̇ (t), ψ(t) ≡ N(t)ς (t) holds if they
coincide at one point. This is the case at t = t0 with the given
initial conditions N(t0) = 0 and ψ(t0) = 0. The equivalence holds
regardless of ς (t0).

The second property (A.2) follows from the uniform complete
constructibility of (7). Since (11) is (7) after the change of co-
ordinates (9), the constructibility of the later implies the one of
the first. We can identify N(t) and its dynamics in (14) with P(t)
in [21, Eq. 1.2] by making F (t) = −Ā⊤(t), H⊤H = Q and G = C⊤.
If the pair (Ā(t), C) is uniformly completely constructible, the
pair (−Ā⊤(t), C⊤) is uniformly completely controllable. Given that
Q > 0, the pair (−Ā⊤(t),Q 1/2) is uniform completely observable
for arbitrary Ā(t). Under these circumstances, Theorem 2.1 in [21]
holds, meaning that N(t) accepts a lower bound of the form (A.2)
for some η̄ > 0.

Now we proceed with the proof of Theorem 1. The equivalence
(A.1) implies that N(t)ς̂ (t)−ψ(t) = N(t)ς̃ (t), with ς̃ (t) = ς̂ (t)−
ς (t). This relationship, together with (11) and (12), yield the error
dynamics

˙̃ς (t) =

(
Ā(t) − K (t)C

)
ς̃ (t) − N(t)

2∑
i=1

ri
⌈
N(t)ς̃ (t)

⌋pi . (A.3)

Note that Ā(t) − K (t)C , with K (t) as in (13), corresponds to

Ā(t) − K (t)C = −

[
κ1 + u(t) 0 0

0 u(t) 0
0 0 0

]
+

[ 0 µ1(y1(t)) u(t) − µ1(y1(t))ξ (t)
−µ1(y1(t)) 0 0

−u(t) + µ1(y1(t))ξ (t) 0 0

]
,

(A.4)

where the second matrix is skew-symmetric.
To analyze the observer convergence, we study the Lyapunov

stability of (A.3). For that, consider the Lyapunov function can-
didate V (ς̃ ) = ς̃⊤ς . Let ς̃ = [ς̃1 ς̃2]

⊤ and consider (A.4). The
derivative of V (ς̃ ) along the trajectories of (A.3) is

V̇ (t) = −2
(
κ1 + u(t)

)
ς̃1(t) − 2u(t)ς̃2(t)

−2
2∑

i=1

ri
(
N(t)ς̃ (t)

)⊤ ⌈ N(t)ς̃ (t)⌋pi ≤ 0. (A.5)

Since V̇ (t) ≤ 0, we conclude from [24, Thm. 4.10] that the origin
of (A.3) is uniformly stable. Note that (A.5) holds regardless of
Assumption 3 since

(
N(t)ς̃ (t)

)⊤ ⌈ N(t)ς̃ (t)⌋pi ≥ 0 for any N(t).
To show the uniform fixed-time convergence of the estimate,

we show that ς̃ = 0 is an uniformly fixed-time stable equilibrium
point. For this, first denote by (N(t)ς̃ (t))j the j-element of the
vector N(t)ς̃ (t) ∈ R3. Hence(
N(t)ς̃ (t)

)⊤ ⌈ N(t)ς̃ (t)⌋pi =

3∑
(N(t)ς̃ (t))j⌈(N(t)ς̃ (t))j⌋pi
j=1

177
=

3∑
j=1

⏐⏐(N(t)ς̃ (t))j
⏐⏐pi+1

=
N(t)ς̃ (t)

pi+1
pi+1.

Given the equivalence between norms in Rn, there exist positive
constants c1 and c2 such that ∥ν∥pi+1 ≥ ci∥ν∥ for any ν ∈ Rn.
Therefore, from the norm equivalence and (A.5) we have

V̇ (t) ≤ −2u(t)
(
ς̃1(t) + ς̃2(t)

)
− 2

2∑
i=1

rici
N(t)ς̃ (t)

pi+1
.

We can further bound V̇ (t) by introducing the lower bound of
N(t) in (A.2). Therefore, for t ≥ t0 + T1, we have

V̇ (t) ≤ −2u(t)
(
ς̃1(t) + ς̃2(t)

)
− 2

2∑
i=1

riciη̄pi+1
∥ς̃ (t)∥pi+1.

Neglect the semi-definite term, and note that V 1/2(t) = ∥ς̃ (t)∥.
Thus we obtain

V̇ (t) ≤ −2
2∑

i=1

riciη̄pi+1V
pi+1
2 (t) < 0. (A.6)

Note that 1
2 (p1 + 1) < 1 and that 1

2 (p2 + 1) > 1 since p1 ∈ [0, 1)
and p2 > 1. To solve the differential inequality (A.6) we use the
Comparison Lemma [24, Lem. 3.4] together with the following
differential equation and its solution:

v̇(t) = −a vα(t), v(t0) ≥ 0, α ≥ 0, α ̸= 1,

v1−α(t) = max
{
v1−α(t0) − a(1 − α)

(
t − t0

)
, 0
}
.

(A.7)

ince (A.6) holds for each term in the sum, we simultaneously
ave

(t) ≤

(
V

1−pi
2 (t0) −

(
1 − pi

)
riciη̄pi+1(t − t0

)) 2
1−pi

. (A.8)

Without loss of generality, assume that V (t0) > 1. We investigate
the required time to ensure 1 ≥ V (t). For that, consider (A.8) with
i = 2. It follows that

V (t) ≤
1(

1

V
p2−1

2 (t0)
+
(
p2 − 1

)
r2c2η̄p2+1

(
t − t0

)) 2
p2−1

≤ 1

holds for

t − t0 ≥
1

(p2 − 1)r2c2η̄p2+1

(
1 −

1

V
p2−1

2 (t0)

)
. (A.9)

or arbitrarily large V (t0), 1 ≥ V (t) can be guaranteed for

− t0 ≥ 1/(r2c2η̄p2+1(p2 − 1)).

his represents an upper bound for the amount of time needed.
urthermore, note that it is finite and independent of the initial
ondition. Now, we investigate the time needed to guarantee
(t) = 0 starting from V (t0) = 1. For that, consider (A.8) with
= 1. Hence
1−p1

2 (t) ≤ 1 −
(
1 − p1

)
r1c1η̄p1+1(t − t0

)
≤ 0 (A.10)

1
r1c1η̄p1+1(1 − p1)

≤ t − t0. (A.11)

Using (A.9) and (A.11), we can estimate the maximum time t⋆ for
which it holds V (t) = 0 for all t ≥ t⋆. This time corresponds to

t⋆ − t0 =
1

+
1

.

r1c1η̄p1+1(1 − p1) r2c2η̄p2+1(p2 − 1)



J.G. Rueda-Escobedo, M. Sbarciog, J.A. Moreno et al. Journal of Process Control 117 (2022) 169–180

S
t
(

i

A

B
i
e

i

V

ince the difference t⋆− t0 does not depend on the initial time, or
he initial value V (t0), we conclude that the origin of the system
A.3) is uniformly fixed-time stable.

Finally, the estimate of the original variables follows from the
nverse relation to (9). □

.2. Proof of Proposition 1

Consider the system (7). By applying the output feedback
K̄ (t)ȳ1(t), where

K̄ =
[
u(t) − µ1(y1(t)) −

1
a

(
u(t) − µ1(y1(t))

)
0
]⊤
,

and the change of coordinates χ̄ (t) = T χ (t), where

T =

[1 0 0
1 a −1
0 0 1

]
, T−1

=

[ 1 0 0
−1/a 1/a 1/a
0 0 1

]
,

we obtain the system description

˙̄χ (t) =

(
T
(
A(t) + K̄ (t)C

)
T−1

)
χ̄ (t)

=

[0 −µ1(y1(t)) u(t) − µ1(y1(t))
0 −u(t) 0
0 0 0

]
χ̄ (t), (A.12)

ȳ1(t) = CT−1χ̄ (t) =
[
1 0 0

]
χ̄ (t).

Note that a bounded output injection does not change the observ-
ability properties of a system [27]. Therefore, we can investigate
the uniform completely observability of (7) by means of (A.12).

The advantage of expressing the system in the form (A.12) is
that we can compute the system response directly. This results in

ȳ1(t) = χ̄1(t0) + χ̄3(t0)
∫ t

t0

(
u(s) − µ1(y1(s))

)
ds

− χ̄2(t0)
∫ t

t0

µ1(y1(s)) exp
(

−

∫ s

t0

u(σ )dσ
)
ds. (A.13)

Note that∫ t+T1

t
ȳ21(s)ds = χ̄⊤(t)M(t + T1, t)χ̄ (t),

where M(t + T1, t) is the observability Gramian of the system.
Thus, from (A.13) we obtain

M(t + T1, t) =

∫ t+T1

t

[
1 K(s, t)

K⊤(s, t) K⊤(s, t)K(s, t)

]
ds, (A.14)

with K(s, t) defined in (16). Note that we can identify B(t, t0)
in (16) with V (t) in [28, Thm. 2] and M(t + T1, t) in (A.14)
with N(t + T1, t) in [28, Thm. 2]. Thus, following the main result
of [28, Thm. 2], we can conclude that the system (7) is uniformly
completely observable iff (15) holds. □

A.3. Proof of Theorem 2

Let x̃2(t) = x̂2(t) − x2(t). In account of (17) and (18) we have
that
˙̃x2(t) = −u(t)x̃2(t). (A.15)

To study the stability of the origin of (A.15), we borrow the
following Lyapunov function from [29, Eq. 4]

V2(x̃2, t) =(
T 2
2 u

2
maxγ

2
3

γ4
+

T2
2

+

∫ t

t−T2

(
τ − t + T2

)
u2(τ )dτ

)
x̃22.

Following [29], we have

β x̃2 ≥ V (x̃ , t) ≥ β x̃2,
1 2 2 2 2 2
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with β1 > 0 and β2 > 0 as in (21). Furthermore, it follows that

V̇2(t) ≤ −
γ4

2
x̃22(t). (A.16)

y invoking [24, Thm. 4.10], we conclude that the origin of (A.15)
s uniformly exponentially stable. Thus, the observer converges
xponentially fast.
To estimate the rate of convergence, we first change (A.16)

nto a differential inequality by using (21):

˙2(t) ≤ −
γ4

2β2
V2(t),

whose solution is

V2(t) ≤ V2(t0) exp
(

−
γ4

2β

(
t − t0

))
.

Using the bounds (21) once more, the inequality (20) follows,
concluding the proof. □

A.4. Proof of Theorem 3

First, we compute the dynamics of the estimation errors z̃(t) =

ẑ(t) − z(t) and ζ̃ (t) = ζ̂ (t) − ζ (t). This results in
˙̃z(t) = −k1u(t)φ1

(
z̃(t)

)
+ u(t)ζ̃ (t),

˙̃
ζ (t) = −k2u(t)φ2

(
z̃(t)

)
− σ̇2(t).

(A.17)

Note that ζ̇ (t) = σ̇2(t) since ζ (t) = c/a σ1 + σ2(t) and that σ1 is
assumed constant according to Assumtion 2. 1.

To continue, we investigate the stability of the origin of (A.17)
to show the convergence of the observer. Since the dilution rate
u(t) is non-negative, it does not change its sign. Therefore, we can
follow [22, Sec. 3.1] to analyze the system stability. According to
this, define ~(t) = [φ1

(
z̃(t)

)
ζ̃ (t)]⊤ and consider the Lyapunov

function

V3(~) = ~⊤

[
ρ1 −1
−1 ρ2

]
~, (A.18)

which is positive definite for ρ1 and ρ2 as in (24). Furthermore,
V3(~) is absolutely continuous and continuously differentiable
everywhere except on the set D = {(z̃, ζ̃ ) ∈ R2

| z̃ = 0} [22].
Consider the gradient components of V3(~):
∂V3

∂ z̃
= 2ρ1φ1

(
z̃
)
φ′

1

(
z̃
)
− 2ζ̃ φ′

1

(
z̃
)
,

∂V

∂ζ̃
= 2ρ2ζ̃ − 2φ1

(
z̃
)
,

where

φ′

1

(
z̃
)

=
1
2
m1|z̃|

−
1
2 + p3m2|z̃|

p3−1
> 0. (A.19)

In the set R2
\ D, the derivative of V3(~) along the trajectories of

(A.17) corresponds to

V̇3(t) =
∂V3

∂ z̃
(t) ˙̃z(t) +

∂V3

∂ζ̃
(t) ˙̃
ζ (t)

= −2u(t)φ′

1(z̃(t))
(
ζ̃ 2(t) − (k1 + ρ1 − k2ρ2)φ1(z̃(t))ζ̃ (t)

+ (k1ρ1 − k2)φ2
1 (z̃(t))

)
+ 2σ̇2(t)

(
φ1(z̃(t)) − ρ2ζ̃ (t)

)
,

where the relation φ2(z̃) = φ′

1(z̃)φ1(z̃) was used. Let α(t, ~(t)) be
an auxiliary function satisfying

σ̇2(t) =
2L
m2

1
(t)φ2

(
z̃(t)

)
α(t, ~(t)), 1 ≥

⏐⏐α(t, ~(t))⏐⏐.
Such function exists in account of Assupmtion 2. 2 and the fact
that for z̃ ̸= 0 we have |φ2(z̃)| ≥ m2

1/2. Using α(t, ~(t)) and (23),
we can rewrite V̇3(t) as

V̇ (t) = −2u(t)φ′
(
z̃(t)

)
~⊤(t)Q

(
t, ~(t)

)
~(t), (A.20)
3 1
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ith(
t, ~(t)

)
=

l1 +
2Lα(t,~(t))

m2
1

1
2

(
l2 − ρ1 − ρ2

2Lα(t,~(t))
m2

1

)
⋆ 1

]
. (A.21)

Proving that V̇ (t) is negative semi-definite reduces to show that
Q
(
t, ~(t)

)
≥ 0 for all ξ ∈ R2

\ D and t ≥ t0. This can be
investigated using the Schur complement, from which we have(
l1 +

2Lα(t, ~(t))
m2

1

)
>

1
4

(
l2 − ρ1 − ρ2

2Lα(t, ~(t))
m2

1

)2

,

or

l1 >
2L
m2

1
+

1
4

(
l2 − ρ1 + ρ2

2Lα(t, ~(t))
m2

1

)2

. (A.22)

ince α(t, ~(t)) can be written as the convex combination

(t, ~(t)) = −λ(t) + (1 − λ(t)), λ(t) ∈ [0, 1],

t is enough to satisfy (A.22) in the extremes. This corresponds
o (24). Therefore, V3(~(t)) is non-increasing, and the origin is
niformly stable. Following [22,30] and for 1

2 ≤ p3 ≤ 1, the ex-
ression (A.20) can be transformed into the differential inequality

3(t) ≤ −α1u(t)V
1
2
3 (t) − α2u(t)V

3p3−1
2p3

3 (t), (A.23)

ith

Q = min
t,ξ

λmin
(
Q
(
t, ~(t)

))
,

α1 = m2
1
λ

1
2
min(P)λQ
2λmax(P)

, α2 = m
1
p3
2

p3λ
1−p3
2p3

min (P)λQ
λmax(P)

.

From here and the Comparison Lemma [24, Lem. 3.4], the evolu-
tion of V3(~(t)) can be bounded as (see [22])

V
1
2
3 (t) ≤ max

{
V

1
2 (t0) −

1
2
α1

∫ t

t0

u(σ )dσ , 0
}
.

ence, if the integral of u(t) diverges, there is a time t⋆ < ∞ for
which V3(t) = 0 for t ≥ t⋆, meaning that the origin of (A.17) is
finite-time stable. This happens if, for example, (19) holds. The
persistency of excitation condition (19) implies the existence of
constants ε1 > 0 and ε2 ∈ R, both independent of t , such that [31,
Thm. 1]∫ t

t0

u(σ )dσ ≥ ε1
(
t − t0

)
+ ε2.

Using this expression, t⋆ can be estimated as

t⋆ = t0 +
2
ε1α1

V
1
2
3 (t0) −

ε2

ε1
.

he persistency of excitation also makes the difference t⋆ − t0
ndependent of the initial time, meaning that the stability is
niform. Thus, we conclude that the origin of (A.17) is uniformly
inite-time stable under these circumstances. This is translated
nto the uniform finite-time convergence of the observer.

Finally, the estimates of the original variables follows from the
nverse relation to (4). □
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